Abstract
The highly selective and efficient capture of heterogeneous types of phosphopeptides is critical for comprehensive and in-depth phosphoproteome analysis, but it still remains a challenge since the lack of affinity material with large binding capacity and controllable specificity. Here, a new affinity material was prepared to improve the enrichment capacity and endue the tunable specificity by introducing guanidyl onto poly(glycidyl methacrylate) (PGMA) modified Fe3O4 microsphere (denoted as Fe3O4@PGMA-Guanidyl). The thick polymer shell endows the composite microsphere with large amount of guanidyl and is beneficial to enhancing the affinity interaction between phosphopeptides and the material. Interestingly, the Fe3O4@PGMA-Guanidyl possesses tunable enriching ability for global phosphopeptides or only multiphosphopeptides through simple regulation of buffer composition. The composite has large enrichment capacity (200 mg g(-1)), extremely high detection sensitivity (0.5 fmol), high enrichment recovery (91.30%), great specificity, and rapid magnetic separation. Moreover, the result of the application to capture of phosphopeptides from tryptic digest of nonfat milk has demonstrated the great potential of Fe3O4@PGMA-Guanidyl in detection and identification of low-abundance phosphopeptides of interest in biological sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.