Abstract

The cupric oxide (CuO) loaded graphitic carbon nitride (g-C3N4) nanocomposites (CuO/g-C3N4) were prepared by a facile calcination method. The formation of monoclinic CuO nanocrystals along with g-C3N4 was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic analysis. X-ray photoelectron spectral (XPS) analysis further confirms the formation of CuO/g-C3N4. Distribution of CuO stone-like crystalline nanoparticles on g-C3N4 nanosheets was observed by transmission electron microscopic images. The influence of CuO loading on the optical property of g-C3N4 was determined by ultraviolet (UV)-visible absorption and photoluminescence (PL) spectral analysis. Band gap was decreased from 2.7 to 2.3 eV by the addition of CuO nanoparticles. The catalytic performance of the synthesized samples in 4-nitrophenol (4-NP) and methyl orange (MO) reduction was evaluated. The 5 wt% CuO/g-C3N4 showed 99.5% (7 min) and 99.7% (4 min) reduction efficiency for 4-NP and MO respectively. The 5 wt% CuO/g-C3N4 could become a potential catalyst in the chemical treatment of organic pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.