Abstract

In this study, a novel hyperbranched phosphorus/nitrogen-containing flame retardant (HPNFR) was facilely synthesized via the transesterification reaction of dimethyl methylphosphonate and tris (2-hydroxyethyl) isocyanurate and characterized successfully by 1H NMR and FTIR. The sample with 4 wt% HPNFR can achieve V-0 rating in UL-94 test and possess a LOI value as high as 34.5%. Conspicuous blowing-out effect was observed during the vertical burning test. TG results indicated that the presence of HPNFR significantly improved the thermal stability of EP thermosets. From cone test, THR, p-HRR, p-SPR and TSP values of HPNFR/EP composites were decreased in comparison to those of pure EP, revealing the reduced fire hazard of EP composites with HPNFR. SEM images of EP thermoset with 4 wt% of HPNFR after cone test exhibited compact and continuous char layers, while those of pure EP are fragmentary and broken. From TG-IR test, the yield of toxic CO and other pyrolysis products was significantly reduced, indicating a decrease in toxicity. Phosphorus-containing compounds were detected in gas phase, which verified the gaseous phase flame retardant effect of HPNFR. Besides, HPNFR would not significantly damage the transparence of EP thermosets, consequently reserved it's application value in some special fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.