Abstract

Summary of main observation and conclusionA facile, efficient and green photochemical synthetic approach has been used to prepare sponge‐like porous Pd nanoparticles. Obtained by ultraviolet irradiation using a K2PdCl4 precursor solution, the final products exhibited three dimensionally interconnected porous structures made up of ~3.6 nm sized Pd nanoparticles. In situ liquid cell TEM results indicated such porous structures are in a dynamic stable state when the particles are distributed in aqueous solution. The porous Pd nanoparticles exhibited electrochemical active surface area (ECSA) of up to 43 m2·g–1 and mass activity of 1144 mA·mg–1 in menthol oxidation, kapp of 0.22 min–1 and normalized kapp/m (kn) of 8.3×104 min–1·g–1 in 4‐nitrophenol (4‐NP) reduction reactions. Comparing with the literature, it is demonstrated that our porous Pd nanoparticles with clean surfaces exhibited very high catalytic performances. This work may shed a light on facile and green synthesis of noble‐metal particles with better catalytic performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.