Abstract

Welding via bond exchange reactions has provided advances in obtaining high-quality joining performance. However, the reported welding method requires a relatively high press force, and challenges are still encountered in welding hard vitrimer. In this work, a facile surface depolymerization strategy was introduced to weld high-performance epoxy vitrimer. The vitrimers were firstly dissolved into ethylene glycol for depolymerization based on the solvent-assisted bond exchange reactions. Then, the depolymerized vitrimers were welded under heat and press force. The effect of the depolymerizing time, welding pressure, welding temperature and welding time on the welding strength were further investigated. It was found that there were optimal values for the depolymerizing time, welding pressure, and welding temperature, respectively, for the welding strength, while the welding strength increased with increasing welding time. Through facile surface degradation, the welding pressure was highly reduced, while the welding strength was increased. With surface depolymerization, the welding strength was 1.55-times higher, but the magnitude of press force was 1/1000-times than that with no surface depolymerization. It is elucidative that surface depolymerization can be used to weld hard vitrimer composites alongside reducing the press force effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.