Abstract

Tailored design of photocatalysts with complicated hollow structures is of great importance for promoting environmental remediation. In this paper, monodispersed hierarchical hollow MoS2 microspheres have been prepared via a facile and economical hydrothermal method with the assistance of surfactant (polyethylene-polypropylene glycol (F68)). The unusual design displays three important features: large specific surface area, strong light absorption, and rich catalytic active sites. The specific surface area of the hierarchical hollow MoS2 microspheres is 21.75 m2g-1, which is higher than that of MoS2 particles (4.05 m2g-1) and commercial MoS2 (2.84 m2g-1). Meanwhile, the hierarchical hollow MoS2 microspheres possess strong light absorption around a broadband wavelength from 200 nm to 800 nm. Furthermore, the ordered MoS2 nanosheets which assemble to the outer surface of the hierarchical hollow MoS2 microspheres display rich catalytic active sites, which are beneficial in promoting the fast transport of charge carriers during the process of photocatalytic reaction. As a result, the photodegradation activity test demonstrates that the hierarchical hollow MoS2 microspheres exhibit excellent photocatalytic activity and recycling stability. The reaction rate constant of the hierarchical hollow MoS2 microspheres for the photodegradation of RhB is 25.32 and 18.18 times faster than that of MoS2 particles and commercial MoS2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.