Abstract

In this work, a composite product of Mn-substituted SnTe, SnO2 nanoparticles, and MnTe-supersaturated precipitates has been fabricated by a simple in situ reaction between SnTe and MnO2 for the first time. Benefiting from the synergistic effect induced by the product of in situ reaction, a remarkable improvement in the thermoelectric performance has been achieved. On the one hand, Mn substitution in SnTe can effectively modify the band structure and enhance the electrical properties of SnTe; on the other hand, the thermal transport can also be dramatically suppressed by in situ reaction-derived multiscale phonon scattering by point defects, SnO2 nanoparticles, and supersaturated MnTe precipitates. Ultimately, a maximum ZT of ∼1.5 at 873 K has been achieved in the SnTe + 10 mol % MnO2 sample, which increases by 224% in comparison with the pristine SnTe, representing one of the best results ever reported for SnTe-based thermoelectric materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.