Abstract

Room temperature sodium-sulfur (Na-S) batteries hold great promise as the next-generation cost-effective energy storage systems. However, their practical implementation is still plagued by the low reversible capacity of a bulk-sized commercial sulfur cathode with low Coulombic efficiency and poor cycling stability. Here, we report a highly stable room temperature Na-S battery using a facile-processed, nanocarbon-promoted, bulk-sized commercial sulfur cathode and a polymer electrolyte. This processed nanocarbon possesses a high binding affinity to sulfur and polysulfides, largely facilitating the sulfur reaction kinetics and leading to high reversible capacity. Meanwhile, by applying a thin coating of the facile-processed nanocarbon on the polymer electrolyte, dead sulfur formation can be avoided, contributing to greatly enhanced capacity retention. Our Na-S battery delivers a reversible capacity of >700 mAh g−1 with near-100% Coulombic efficiency and the ultrahigh capacity retention of 98.2% at 0.2C after 200 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.