Abstract
In the present study, a pH-sensitive controlled drug delivery system was prepared from alginate beads impregnated with AlCu layered double hydroxides (LDH) supported copper metal-organic framework (Alg-DOX-Cu MOF-LDH beads) for controlled release from doxorubicin (DOX) to breast cancer cells. The physicochemical properties of Alg-DOX-Cu MOF-LDH beads were determined by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FE-SEM), and Zeta potential. The in vitro release studies showed that the Alg-DOX-Cu MOF-LDH beads had more controlled drug release than the DOX-Cu MOF-LDH and in vitro release of DOX from both carriers showed pH-response release behavior. The kinetic adsorption studies also confirmed that the drug release from the DOX-Cu MOF-LDH and Alg-DOX-Cu MOF-LDH beads well obey the Korsmeyer-Peppas model. Meanwhile, in vitro cytotoxicity and DAPI tests on L929 (non-cancerous cells) and MCF-7 (human breast cancer cells) clearly showed that the prepared AlCu LDH and Cu MOF-LDH systems had good biocompatibility. Whereas, Alg-DOX-Cu MOF-LDH beads had higher cytotoxicity effects as a result of the controlled release of DOX to MCF-7 cells. These results suggested that the Alg-DOX-Cu MOF-LDH beads can be used as an excellent drug delivery system for cancer therapy and other biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.