Abstract

Addition of high-aspect-ratio (AR) nanofillers can markedly influence flow behavior of polymer systems. As a result, application of graphite nanoplatelets (GNP) allows preparation of microfibrillar composites (MFC) based on PCL matrix reinforced with in-situ generated PLA fibrils. This work deals, for the first time, with preparation of analogous melt-drawn fibers. Unlike other blend-based fibers, the spinning and melt drawing leads to structure of deformed inclusions due to unfavorable ratio of rheological parameters of components. Subsequent moderate cold drawing of the system with dissimilar deformability of components causes strengthening with PLA fibrils. Unexpectedly, high velocity and extent of cold drawing leads to structure with low-AR inclusions, similar to the original melt-drawn blend. Extensive fast deformation of the soft PCL matrix does not allow sufficient stress transfer to rigid PLA. In spite of peculiarities found, the GNP-aided melt spinning allows facile preparation of biodegradable biocompatible fibers with wide range of diameters (80-400 µm) and parameters (2.35-18 cN/tex).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.