Abstract

A very simple protocol, which involves the chemical reduction of AgNO3 and Fe(NO3)3 with ethylene glycol as reducing agent, has been developed for synthesizing Ag@Fe3O4 core/shell nanostructures in which the silver nanoparticle core was covered by a thicker layer of the Fe3O4 nanoparticle shell. The obtained Ag@Fe3O4 core/shell nanostructures simultaneously possess both strong magnetic responsiveness and tunable plasmonic properties. The plasmonic properties of the composite nanospheres are profoundly influenced by the high dielectric constant of the outer Fe3O4 shell layer and could be conveniently modulated over a broad spectral range spanning from the ultraviolet to near-infrared (NIR) regions (789 nm) by simply altering the thickness of the Fe3O4 shell. The localized surface plasmon resonances of the core/shell nanocomposites red-shifted with increasing thickness of the Fe3O4 shell. The morphology transformation of the Ag/Fe3O4 nanocomposites from core/shell structures with a continuous dense coating to flower-like nanostructures also allows the tuning of their plasmonic properties to be blue-shifted (to 510 nm). Catalytic degradation of rhodamine 6G (R6G) experiments show that the Ag/Fe3O4 composite nanostructures exhibit high catalytic activity by sodium borohydride. Due to the efficient optical response through localized surface plasmon resonances, the catalytic performance from the silver core and external magnetic manipulation from the Fe3O4 shell, such multifunctional nanoparticles will provide an opportunity for simultaneous optical detection and catalytic reduction with the additional benefit of relatively facile recovery and regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.