Abstract

A novel and robust enzymatic biosensing platform with high sensitivity is developed based on facile one-step assembled bio-nanocomposites with enzymes-loaded polymeric nanoparticles decorating multi-walled carbon nanotubes (MWCNTs). An amphiphilic copolymer PAVE containing photo-cross-linkable coumarin segments and carboxylic groups was co-assembled with MWCNTs in aqueous solution while encapsulating the model enzyme namely glucose oxidase (GOx) simultaneously, generating necklace-like bio-nanocomposites (GOx@PAVE-CNTs) with GOx-loading polymeric nanoparticles as nanobeads and MWCNTs as conducting micron-string. Then the GOx@PAVE-CNTs bio-nanocomposites were electro-deposited onto electrode surface and a robust biosensing complex film with porous network structure was formed after following photo-cross-linking. Consequently, an enzymatic glucose biosensor was successfully constructed. The biosensor exhibited ultrafast response (<3 s) to glucose with a considerably wide linear range (1.0 μM ∼ 5 mM) and a low detection limit (0.36 μM) for glucose detection. High sensitivity and selectivity of the biosensor toward glucose were also well demonstrated. Furthermore, the biosensor showed exceptionally good stability and reproducibility. More importantly, the glucose biosensor was practically used for glucose detection from human urine and serum samples with satisfactory results. As a proof-of-concept strategy, this facile and effective strategy for biosensor fabrication is of considerable interest because of its versatility to be generalized to many other enzymatic biosensor systems, exhibiting promising and practical potential in bio-medical and life health applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.