Abstract

AbstractIn this study, we have investigated the effect of counter anions on the morphology of cobalt oxide nanostructures. The nanostructures of cobalt oxide are prepared by a low temperature aqueous chemical growth method. The morphology of cobalt oxide nanostructure material was investigated by scanning electron microscopy and the crystalline structure was studied by powder X‐ray diffraction technique. The cobalt oxide nanostructures exhibit the nanowire, lump, bundle of the nanowire and flower‐like morphologies. The XRD study has revealed a cubic phase of cobalt oxide nanostructures. The electro‐catalytic properties of cobalt oxide nanostructures were explored through cyclic voltammetry and amperometric techniques by sensing of lactic acid in the alkaline media. The cobalt oxide nanostructures prepared from cobalt nitrate have shown a well‐resolved redox peak. The proposed mechanism for the non‐enzymatic lactic acid sensor is elucidated by considering the morphology and cyclic voltammetry response. The limit of detection for the sensor was found to be 0.006 mM and it exhibits a linear range from 0.05–3 mM of lactic acid as shown by cyclic voltammetry. The amperometric response has shown the excellent current‐concentration response and the linear range of sensor was found to be 0.1 mM to 5.5 mM. The lactic acid sensor is stable, selective and can be used for practical applications. This study provides an excellent alternative analytical tool for the determination of lactic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.