Abstract

Suitable donor and acceptor distribution in the blended photoactive layer benefits the charge transfer and exciton separation to boost the performance of organic solar cells (OSCs). Herein, we propose a universal solvent-flushing method for building component distribution in photoactive layers based on the different solubilities of the donor and acceptor in acetylacetone (Acac). The donor and acceptor concentration distribution through the photoactive layers is investigated by the time-of-flight secondary-ion mass spectroscopy, and the surface concentration changes are examined by contact angle measurements and atomic force microscopy tests. The charge-transfer properties of OSCs before and after Acac flushing are further investigated by the rectification ratio and light intensity-dependent Jsc and Voc measurements. For inverted OSCs based on PBDB-TF:IT-4F, the power conversion efficiency (PCE) enhances from 12.87 to 14.05%, and for a PBDB-TF:Y6-based device, the PCE also significantly increases from 15.40 to 16.51% because of greatly enhanced Jsc and FF, benefited from enhanced charge transport and suppressed charge recombination by solvent-flushing. Our findings suggest that solvent-flushing is a simply processed and easily controlled method to achieve vertical component distribution in photoactive layers to boost the performance of OSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.