Abstract

Two click-based porous organic polymers (CPP-1 and CPP-2) are readily synthesized through a click reaction. Using CPP-1 and CPP-2 as supports, palladium nanoparticles (NPs) with uniform and dual distributions were prepared through H2 and NaBH4 reduction routes, respectively. Ultrafine palladium NPs are effectively immobilized in the interior cavities of polymers. The coordination of 1,2,3-triazolyl to palladium and the confinement effect of polymers on palladium NPs are verified by solid-state (13)C NMR and IR spectra, XPS analyses, EDX mapping, and computational calculation. The steric and electronic properties of polymers have a considerable influence on the interaction between polymers and palladium NPs, as well as the catalytic performances of NPs. The ultrafine palladium NPs with uniform distribution exhibit superior stability and recyclability over palladium NPs with dual distributions and palladium on charcoal in the hydrogenation of nitroarenes, and no obvious agglomeration and loss of catalytic activity were observed after recycling several times. The excellent performances mainly result from synergetic effects between palladium NPs and polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.