Abstract

Inverse opal (IO) films with mesoporous structures hold promise as high-performance electrodes for various photoelectrochemical devices because of their high specific area as well as their fully connected pore structure. A great challenge to their use is obtaining an intact film of mesoscale colloidal crystals as a template. Here, using the plate-sliding coating method coupled with hot air flow, we successfully deposited mesoscale colloidal crystals onto the substrate. A TiO2 mesoscale IO (meso-IO) with 70 nm pores was then successfully fabricated via atomic layer deposition of TiO2 and subsequent removal of the template. As a photoelectrochemical electrode, the meso-IO structure exhibits enhanced charge transport properties as well as a high specific area. Moreover, dye-sensitized solar cells fabricated using the meso-IO electrode exhibit a higher photocurrent and cell efficiency than a cell constructed using a conventional TiO2 nanoparticle electrode. This meso-IO film provides a new platform for developing electrodes for use in various energy storage and conversion devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.