Abstract

Resource recovery and reuse are essential for sustainable development, particularly for high-value resources such as homogeneous (photo)catalysts, active pharmaceutical ingredients, and high-value natural compounds, which can offer economic benefits. Recently, organic solvent nanofiltration (OSN) for resource recovery has gained significant attention owing to its advantages including low energy consumption and seamless integration with other processes. Polymers of intrinsic microporosity (PIMs) have great potential as membrane materials for OSN, owing to their excellent pore properties and solution processability. However, swelling and dissolution of PIMs in organic solvents can impede the filtration performance of PIMs-based OSN membranes. In this study, we fabricated thin-film composite hollow fiber membranes for OSN based on PIMs with improved organic solvent stability using a semi-interpenetrating polymer network (semi-IPN) formed by cross-linking Matrimid with 1,6-Hexanediamine with the PIMs through the liquid phase cross-linking method. Semi-IPNs mitigate swelling and tighten the pores of PIMs-based membranes, enabling excellent filtration and molecular separation performance. Furthermore, the fabricated PIMs with a semi-IPN membrane exhibited excellent rejection performance (>96%) for homogeneous photocatalysts, allowing successful concentration and recovery via OSN. Therefore, PIMs-based membranes with a semi-IPN hold great promise as OSN membranes for the recovery of valuable resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.