Abstract
A facile strategy was applied to transfer chemically exfoliated molybdenum disulphide (MoS2) nanosheets from aqueous medium to organic solvents. The MoS2 nanosheets were then modified by trisilanol-phenyl-POSS (T7POSS) which was confirmed by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS) and Powder X-Ray Diffraction (PXRD). The modified MoS2 nanosheets were then incorporated into poly (methyl methacrylate) (PMMA) via a simple solution blending method. The Scanning Electron Microscope (SEM) and Transmission electron microscope (TEM) were employed to demonstrate the well-dispersion of nanosheets in polymeric matrix. Compared to neat PMMA, the decomposition temperatures (Td) and the half weight decomposition temperatures (Thalf) of POSS-MoS2/PMMA nanocomposites at nanosheets concentration of 0.2 wt% were dramatically increased by 35.2 °C and 35.3 °C, respectively. Meanwhile, according to the measurements of Dynamic Mechanical Analysis (DMA), the storage modulus at 30 °C is significantly improved by 5.2 times and the glass transition temperature (Tg) is also enhanced by 6.2 °C. Remarkably, POSS-MoS2/PMMA nanocomposites possess low optical limiting differential transmittance Tc (0.5%), low nonlinear optical absorption onset threshold FON (0.02 J⋅cm−2), low optical limiting threshold FOL (0.4 J⋅cm−2) and high nonlinear coefficient β (297⋅cm GW−1), highlighting their vast potential in the development of solid-state optical limiting materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.