Abstract
Fe3O4 octahedra embedded in conductive nanoporous copper (NPC) network are straightforwardly fabricated by means of alloy refining followed by facile electroless dealloying in mild condition. During selectively dissolving the Al from FeCuAl alloy, the residual Cu atoms assemble to form sponge-like nanostructure, meanwhile the Fe atoms undergo spontaneous oxidation and aggregation to grow into Fe3O4 octahedra travelled through NPC network. Owing to the combination of conductive NPC network, Fe3O4 octahedra exhibit dramatically enhanced lithium storage performances with excellent reversible capacity, enhanced rate performance, as well outstanding cyclability compared with pure Fe3O4 octahedra. Especially, Fe3O4/Cu nanocomposite shows superior cycling stability with the excellent reversible capacity of 664.0 and 512.6mAhg−1 retained over 500 cycles at the current densities of 300 and 1000mAg−1, respectively. Moreover, it shows good rate capability even when cycled at 1000mAg−1. With the advantages of exceptional performances and facile preparation, the as-made Fe3O4/Cu nanocomposite shows prospective application potential as an advanced anode material in lithium ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.