Abstract

A facile microwave-assisted ethylene glycol method is developed to synthesize the SnO2 nanoparticles dispersed on or encapsulated in reduced graphene oxide (SnO2-rGO) hybrids. The morphology, structure, and composition of SnO2-rGO are investigated by scanning electron microscopy, transmission electron microscope, thermo-gravimetric analyzer, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electrochemical performance of SnO2-rGO as anode materials for lithium-ion batteries was tested by cyclic voltammetry, galvanostatic charge–discharge cycling, and rate capability test. It is found that the SnO2 nanoparticles with a uniform distribution have p-type doping effect with rGO nanosheets. The as-prepared SnO2-rGO hybrids exhibit remarkable lithium storage capacity and cycling stability, and the possible mechanism involved is also discussed. Their capacity is 1222 mAhg−1 in the first cycle and maintains at 700 mAhg−1 after 100 cycles. This good performance can be mainly attributed to the unique nanostructure, good structure stability, more space for volume expansion of SnO2, and mass transfer of Li+ during cycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.