Abstract
In this paper, we present two methods to improve the performance of landmark detection algorithms that are designed to detect individual landmarks. We focus on the landmark configuration module that takes the output of the individual landmark detectors and searches for a configuration of optimal landmark locations based on appropriate shape constraints. We design two configuration search approaches: (i) a multivariate conditional Gaussian-based model, and (ii) a MRF-based formulation with higher-order potentials. We evaluated the performance of our proposed methods using several state-of-the-art detectors, and consistently obtained improved performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.