Abstract
Understanding the interfacial segregation behavior in V-doped WC-Co hard metals is necessary to demystify the effect of dopant on microstructural evolution and mechanical properties. Herein, aberration-corrected scanning transmission electron microscopy was utilized to investigate the atomic level segregation mechanism at WC-Co phase boundaries and WC grain boundaries in V-doped WC-Co composites systematically. A key finding is that the segregation behavior largely depends on the orientation of low-index planes, particularly the basal and prismatic facets that prevail in WC-Co. V solute atoms show a relatively weak segregation at the WC prismatic plane-terminated interfaces, occurring largely within a monolayer with ∼10 at% V at the outermost surface. In contrast, segregation at the basal facets of WC grains distributes within a bilayer with a higher concentration of ∼25 at%. Additionally, this study shows that the facet-dependent interfacial segregation behavior is universal for both phase boundaries and grain boundaries, which often have at least one basal or prismatic WC facet. Our study presents a general solute segregation mechanism at an atomic level and demonstrates that the terminal planes of interfaces determine the atomic structure and segregation profile, while the interfacial orientation has little influence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.