Abstract
Along with social distancing, wearing masks is an effective method of preventing the transmission of COVID-19 in the ongoing pandemic. However, masks occlude a large number of facial features, preventing facial recognition. The recognition rate of existing methods may be significantly reduced by the presence of masks. In this paper, we propose a method to effectively solve the problem of the lack of facial feature information needed to perform facial recognition on people wearing masks. The proposed approach uses image super-resolution technology to perform image preprocessing along with a deep bilinear module to improve EfficientNet. It also combines feature enhancement with frequency domain broadening, fuses the spatial features and frequency domain features of the unoccluded areas of the face, and classifies the fused features. The features of the unoccluded area are increased to improve the accuracy of recognition of masked faces. The results of a cross-validation show that the proposed approach achieved an accuracy of 98% on the RMFRD dataset, as well as a higher recognition rate and faster speed than previous methods. In addition, we also performed an experimental evaluation in an actual facial recognition system and achieved an accuracy of 99%, which demonstrates the effectiveness and practicability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.