Abstract
For a human face, the Gabor transform can extract its multiple scale and orientation features that are very useful for the recognition. In this paper, the Gabor-feature-based face recognition is formulated as a multitask sparse representation model, in which the sparse coding of each Gabor feature is regarded as a task. To effectively exploit the complementary yet correlated information among different tasks, a flexible representation algorithm termed multitask adaptive sparse representation (MASR) is proposed. The MASR algorithm not only restricts Gabor features of one test sample to be jointly represented by training atoms from the same class but also promotes the selected atoms for these features to be varied within each class, thus allowing better representation. In addition, to use the local information, we operate the MASR on local regions of Gabor features. Then, by considering the structural characteristics of the face and the effects of the external interferences, a structural-residual weighting strategy is proposed to adaptively fuse the decision of each region. Experiments on various datasets verify the effectiveness of the proposed method in dealing with face occlusion, corruption, small number of training samples, as well as variations of lighting and expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.