Abstract
In this paper, we propose a novel example-based face hallucination method through nonparametric Bayesian learning based on the assumption that human faces have similar local pixel structure. We cluster the low resolution (LR) face image patches by nonparametric method distance dependent Chinese Restaurant process (ddCRP) and calculate the centres of the clusters (i.e., subspaces). Then, we learn the mapping coefficients from the LR patches to high resolution (HR) patches in each subspace. Finally, the HR patches of input low resolution face image can be efficiently generated by a simple linear regression. The spatial distance constraint is employed to aid the learning of subspace centers so that every subspace will better reflect the detailed information of image patches. Experimental results show our method is efficient and promising for face hallucination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.