Abstract

Privacy protection has become a crucial concern in today’s digital age. Particularly sensitive here are facial images, which typically not only reveal a person’s identity, but also other sensitive personal information. To address this problem, various face deidentification techniques have been presented in the literature. These techniques try to remove or obscure personal information from facial images while still preserving their usefulness for further analysis. While a considerable amount of work has been proposed on face deidentification, most state-of-the-art solutions still suffer from various drawbacks, and (a) deidentify only a narrow facial area, leaving potentially important contextual information unprotected, (b) modify facial images to such degrees, that image naturalness and facial diversity is suffering in the deidentify images, (c) offer no flexibility in the level of privacy protection ensured, leading to suboptimal deployment in various applications, and (d) often offer an unsatisfactory trade-off between the ability to obscure identity information, quality and naturalness of the deidentified images, and sufficient utility preservation. In this paper, we address these shortcomings with a novel controllable face deidentification technique that balances image quality, identity protection, and data utility for further analysis. The proposed approach utilizes a powerful generative model (StyleGAN2), multiple auxiliary classification models, and carefully designed constraints to guide the deidentification process. The approach is validated across four diverse datasets (CelebA-HQ, RaFD, XM2VTS, AffectNet) and in comparison to 7 state-of-the-art competitors. The results of the experiments demonstrate that the proposed solution leads to: (a) a considerable level of identity protection, (b) valuable preservation of data utility, (c) sufficient diversity among the deidentified faces, and (d) encouraging overall performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.