Abstract

Mechanical properties and sintering behavior of additive-free and TiN-doped ZrB2 ceramics were studied. Reactive spark plasma sintering method was applied for manufacturing of ceramics at 1850 °C for 6 min under 40 MPa. The impact of TiN addition on the microstructure evaluation, densification, and mechanical feathers was investigated. A porous monolithic ZrB2 with a relative density of 76.5 % was manufactured, while the introduction of 5 wt% TiN resulted in enhancement of relative density to 93.1 %. The formation of (Zr,Ti)B2 solid solution and in-situ h-BN and ZrN phases was proven by microstructural assessments and X-ray diffractometry. Minimizing the grain growth and improving the densification, as the results of TiN addition, led to enhancement in mechanical properties. The values of bending strength, fracture toughness, and Vickers hardness boosted from 187.6 MPa, 1.9 MPa.m½, and 10.1 GPa for additive-free ZrB2 to 606.5 MPa, 4.5 MPa.m½, and 18.8 GPa for (Zr,Ti)B2–ZrN–BN composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.