Abstract

The science of biomimicry has served as a fusion point between nature and technology where one could adopt nature’s best solution for human’s use. Lotus leaf, for example, possesses self-cleaning capability due to the unique physical and chemical properties of its surface structural features. In this work, we aimed to mimic these features on glass surface using ZnO nanostructures to achieve the self-cleaning functionality. A series of ZnO films were electrochemically deposited on indium-doped tin oxide (ITO) conducting glass substrates from different aqueous electrolytes at systematically varied deposition potentials and electrolyte conditions. The surface morphology, density, orientation and aspect ratio of the ZnO micro/nanostructures obtained were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). ZnO ranging from two dimensional plate-like to one-dimensional needle-like micro/nanostructures were observed. Results from these studies show that lower electrolyte concentrations tend to favor one-dimensional growth of ZnO nanostructures that self-assembled into micron-size flower-like clusters at higher deposition temperatures. The ZnO-modified hierarchical dual-structured surface exhibits superhydrophobic property with water contact angle as high as 170o.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.