Abstract

In this study, a rubber forming method is used to fabricate titanium bipolar plates for proton exchange membrane fuel cells. A titanium blank with a thickness of 0.1 mm is compressed using a stamping mold equipped with a 200-ton hydraulic press to fabricate bipolar plates. A forming experiment is carried out by changing different parameters such as the punch velocity, punch pressure, rubber thickness, rubber hardness, and draft angle of the channel. The optimum forming conditions are found to be a rubber thickness of 10 mm, rubber hardness equivalent to that of Shore A 20, punch velocity of 30 mm s−1, punch pressure of 55 MPa, and punch draft angle of 30°. The fabricated titanium bipolar plate is coated with a TiN layer. A single cell with a TiN-coated titanium bipolar plate is examined and compared to those with uncoated titanium and graphite bipolar plates. The initial performances (in terms of current densities) of the single cells with the uncoated titanium, TiN-coated titanium, and graphite bipolar plates are 396, 799, and 1160 mA cm−2, respectively, at a cell voltage of 0.6 V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.