Abstract

In this study, a novel ternary AgI/ZnIn 2 S 4 /BiVO 4 (AZB) composite photocatalyst was successfully prepared by hydrothermal method and in-situ precipitation method. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS and so on, and the photocatalytic activity was evaluated through photocatalytic degradation of tetracycline (TC) under visible light irradiation. When the molar ratio of Bi to Ag was 1:1, the degradation rate of TC can reach 91.44 % within 150 min. The AZB heterojunction demonstrated outstanding efficiency with the apparent reaction rate constants of 0.02118 min −1 for TC removal, was 4.68, 3.27 and 3.27 times higher than that of pure BiVO 4 , AgI and ZnIn 2 S 4 . Based on active species trapping experiments and ESR analysis, a dual Z-Scheme pathways among BiVO 4 , AgI and ZnIn 2 S 4 for effective separation of photogenerated charges was recommended. This work provided a promising insight for the design of ternary dual Z-scheme heterojunction with multilevel electron transfer to present greater photo-absorption, charge separation, and photodegradation for environmental decontamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.