Abstract
In this paper, we are reporting the fabrication of a solution-processed SnO2-based flexible ReRAM using laser-induced graphene (LIG) transferred onto polydimethylsiloxane (PDMS). The fabricated ReRAM showed forming-free and self-compliance bipolar resistive switching characteristics when the applied voltage was swept from 0 V to 4.5 V for SET and from 0 V to - 4.5 V for RESET. The device operates as a filamentary type ReRAM and its conduction mechanism analysis indicates that the space charge limited conduction (SCLC) is dominant mechanism in the analog resistive switching of the fabricated device. For the reliability analysis, 100 cycles of endurance test and 1.8 × 103 s of retention test were performed. The flexibility of the fabricated ReRAM device was demonstrated by showing that the resistive switching characteristics were still obtained after bending 200 times repeatedly down to 1 mm radius. Our study suggests the new fabrication process of a solution-processed flexible ReRAM and proves its potential applications to flexible electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.