Abstract
Silicon-based electrodes hold a great potential application in lithium-ion batteries (LIBs) due to the high-energy-density. However, huge volume expansion and poor electric conductivity hinder the commercial application of silicon-based materials. To alleviate these problems, two different hierarchical core-shell composites, silicon/carbon@porous carbon nanofibers (Si/C@PCNF) and silicon@hollow porous carbon nanofiber (Si@HPCNF) are designed and prepared through coaxial electrospinning. The shell layer prevents silicon contacting with electrolyte directly, and the porous carbon nanofibers shorten Li+ diffusion distance and facilitate ion transport. Compared with Si@HPCNF composites, Si/C@PCNF composites achieve a better electrochemical performance owing to the high surface area (68.05 m2/g) and the fact that silicon nanoparticles are connected to each other by porous carbon in the core. The Si/C@PCNF electrodes deliver a large reversible capacity (842.1 mAh∙g−1 after 500 cycles at 0.5 A∙g−1), a good rate capability (1366.6 mAh∙g−1 at 0.5 A∙g−1) and an excellent cycle stability (420.3 mAh∙g−1 at 2.0 A∙g−1 after 1000 cycles), indicating that it can be served as a promising anode for high-performance LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.