Abstract

Silicon and oxide membranes were fabricated using an ion-cut layer transfer process, which is suitable for sub-micron-thick membrane fabrication with good thickness uniformity and surface micro-roughness. After hydrogen ions were implanted into a silicon wafer, the implanted wafer was bonded to another wafer that has patterned cavities of various shapes and sizes. The bonded pair was then heated until hydrogen-induced silicon layer cleavage occurred along the implanted hydrogen peak concentration, resulting in the transfer of the silicon layer from one wafer to the other. Using this technique, we have been able to form sealed cavities and channels of various shapes and sizes up to 50-/spl mu/m wide, with a 1.6-/spl mu/m-thick silicon membrane. As a process variation, we have also fabricated silicon dioxide membranes for optically transparent applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.