Abstract

We report a facile and novel strategy on the fabrication of well-defined raspberry SiO2/polystyrene (SiO2/PS) particles via radiation miniemulsion polymerization. Starting from methacryloxypropyltrimethoxysilane (MPS)-functionalized SiO2 particles (176 nm), raspberry SiO2/PS particles (257 nm) with a submicron SiO2 core decorated by nano-sized PS latex particles (58 nm) are obtained after γ-ray induced miniemulsion polymerization of styrene (St). It is found that MPS grafted density on the surface of submicron SiO2 particles, the weight ratio of St to SiO2 particles (WSt/o-SiO2), as well as the surfactant concentration will affect the morphology and wettability of the resultant SiO2/PS hybrid particles. When the well-defined raspberry SiO2/PS particles are deposited on a blank glass substrate, a dual-size roughness surface topology was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). This film has a static water contact angle as high as 151°. However, this film exhibits a large contact angle hysteresis (∼116°) and strong adhesion to water. Furthermore, this kind of superhydrophobic particulate film can be used as a “mechanical hand” for transportation of small water droplets without loss, thus it may have potential applications in industrial fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.