Abstract

Lotus-type porous copper with aligned long cylindrical pores was fabricated by continuous casting technique through thermal decomposition method (TDM) in an argon atmosphere of 0.1 MPa. A pellet of titanium hydride was supplied into molten copper with adjusting the time interval to maintain the constant concentration of hydrogen to be dissolved in the melt, when the transfer velocity of the unidirectional solidification is changed. Long lotus-type porous copper slabs were fabricated with constant solidification velocity. The effect of the transfer velocity on the porosity and pore size was investigated. The average pore diameter was independent of the transfer velocity, but the porosity is slightly dependent on the velocity. It is apparent that the continuous casting technique can be applicable for production of lotus metals through TDM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.