Abstract

Low-cost carbon nanofibers are fabricated from lignin, the second most abundant raw material in wood after cellulose and polyacrylonitrile mixture as a carbon precursor by electrospinning, followed by suitable heat treatments. As the lignin content in the precursor increases, the carbon nanofibers become thinner, as seen from scanning electron microscopy images. However, their carbon structure and electrochemical performance are found to be very similar, even though surface functional groups on carbon nanofibers are slightly different from each other. For example, in the initial charge (lithium insertion) and discharge (lithium deinsertion) process, the reversible specific capacities of the various carbon nanofibers come from different precursor ratios of lignin and polyacrylonitrile are similar. Even at a fast (7 min) charge and discharge condition, the carbon nanofibers prepared from the lignin-containing precursors show a discharge capacity of 150 mAh g−1. The lignin-based carbon nanofibers thus show promise for use in high-power lithium ion battery anodes with low price.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.