Abstract

The construction of heterojunction plays a key role in solving the charge separation and transfer at the interface of photocatalyst. Herein, a new type of step-scheme (S-scheme) heterojunction was formed by growing cobalt oxide (CoO) in situ on porous graphitic carbon nitride (PCN) to convert CO2 to CO. The porous structure of PCN can increase the absorption of CO2 and act as an active site. The special charge separation of S-scheme heterojunction can give CoO/PCN system with strong redox ability. And S-scheme heterojunction can accelerate charge separation and transfer at the interface. Compared with CoO and PCN, CoO/PCN composites exhibits a higher CO2 reduction rate (40.31 μmol g-1h−1), 3.43 and 23.85 times higher than that of CoO (11.73 μmol g-1h−1) and PCN (1.69 μmol g-1h−1), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.