Abstract

Nanostructures with high electrical conductivity were fabricated on silicon surfaces using a laser-assisted scanning tunneling microscope (LA-STM). The nanostructures, dots and lines, were fabricated on H-passivated p-doped silicon (110) surfaces. By precisely controlling the experimental conditions such as pulse energy and tip-surface gap distance, feature sizes (dot diameters and line widths) and heights of the fabricated nanostructures could be controlled. For instance, a dot with a diameter of 30nm and a line with a width of 30nm were obtained. In addition, scanning tunneling microscopy investigation of the structures revealed that their band gaps were changed during the LA-STM process. As a consequence, the local conductivity (more precisely the tunneling probability) was enhanced. Numerical simulations based upon the finite-difference-time-domain algorithm provide detailed insight into the spatial distribution of the enhanced optical field underneath the STM tip and associated physical phenomena. Potential applications of the developed nanostructuring process are anticipated in various nanotechnology fields, particularly in the field of nanoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.