Abstract

Electronics components used in space and strategic missions are exposed to harsh radiation environments, which could cause operational malfunction of the system through lattice displacement or ionization effects. One potential solution is to use tungsten as radiation shielding. Tungsten is a very effective material in shielding electronic components and manufacturing gratings for x-ray imaging. However, intrinsic properties of tungsten (e.g. density, chemical/thermal inertness and hardness) post a significant challenge of fabricating the material into micro-scale and delicate structures, especially in electronic device fabrication. To address the problem, we designed a new tungsten nanoink and developed a straightforward approach to create tungsten micro-structures by 3D printing. Various microstructures down to 10 µm resolution have been patterned and fabricated by electrohydrodynamic inkjet (e-jet) printing using tungsten nanoink. By optimizing process parameters (voltage modality) and materials properties (ink formulation), the dimension and morphology of the structures can be precisely controlled. An AC-modulated voltage was employed during the e-jet printing process to make the patterns much more controllable and stable. Multi-layer tungsten lines were characterized by x-ray imaging and exhibited excellent absorption of x-ray radiation. With the same thickness, printed lines showed nearly 1/3 absorptivity of x-ray radiation of bulk tungsten, leading to significant radiation attenuation effectiveness. Tungsten nanoink is a new material used in e-jet printing that has not been reported in the literature to the best of authors’ knowledge. The study establishes a new methodology of manufacturing micro-nano scale shielding components for electronic devices and rapid prototyping of gratings and collimators in radiography for medical and inspection applications. The research also provides practical guidance to fabricate high melting-point metals via nanoink and micro/nano scale 3D printing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.