Abstract
Abstract A core-shell structure Au-based catalysts mSiO2/Au/Co3O4 HS were successfully derived from in-situ growth ZIF-67 hollow spheres, which were synthesized by a one-step soft template method. The samples were characterized by SEM, TEM, EDX, XPS, XRD and BET to confirm its successful preparation and structural features. The catalytic performance of the catalysts were evaluated by liquid phase oxidation of benzyl alcohol to benzaldehyde with O2 as the oxidant under alkaline conditions. The experimental results illustrated that reaction conditions, including effect of catalyst amount, oxygen flow rate, reaction temperature and reaction time, were optimized to be 40 mg, 50 ml/min, 140 °C and 5 h, respectively. Meanwhile, 55% conversion of benzyl alcohol and 84% selectivitiy to benzaldehyde together with the excellent reusability and stability were achieved under optimal reaction conditions, which was attributed to the core-shell structure leading to the encapsulation of Au NPs and provision of multiple active reaction interface. Based on the intermediates formed from the de-protonation of substrate, a plausible oxidation reaction mechanism with mSiO2/Au/Co3O4 HS catalysts was tentatively proposed to study the relationship between structure and catalytic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Taiwan Institute of Chemical Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.