Abstract

LiFePO4 (LFPO)-based composite cathode was deposited on Li0.35La0.55TiO3 (LLTO) solid electrolyte via slurry coating method. A composite cathode comprising of LiFePO4, LLTO, and carbon black (CB) were mixed together in a slurry and deposited on a dense LLTO pellet substrate. The effects of heat treatment temperature and hot-pressing in the structure and densification of the deposited composite cathode were investigated. Cathode component precursors were analyzed for its particle size distribution using particle size analyzer and revealed a bimodal particle size distribution for each component materials. Structural characterization using X-ray powder diffraction (XRD) analysis revealed that distinct XRD peaks were observed which can be attributed to LFPO and LLTO for the deposited as-dried and heat treated (450 °C ) composite cathodes. Surface and cross-sectional SEM images revealed that hot-pressing provided denser morphology with smaller thickness as compared to the just as-dried and heat treated samples without the application of temperature with pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.