Abstract

Aluminum was composited with iron-base shape memory alloy (SMA) fiber. It is important to join between matrix metal and reinforced SMA fiber successfully. Matrix metal can obtain compressive residual stress caused by shape memory effect of SMA fiber without strong interface. In this study, aluminum matrix composite reinforced by iron-base SMA fiber was fabricated by Spark Plasma Sintering (SPS). At this method, sintering of hard-to-sinter materials (Al and Ti), junction of flame bonding materials is easy. The pure aluminum powder with iron-base SMA fiber was joined at 773K. As a result, intermetallic phase was formed at the interface between aluminum and iron-base SMA fiber and it was clarified that the interfacial strength depends on kind and thickness of intermetallic phase. This strong interface gives beneficial residual stress into aluminum from SMA fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.