Abstract

Novel hierarchical zeolite 4A microspheres consisted of interconnected nanoflakes were successfully prepared from Kaolin precursor in a simple ethanol–water mixed solvent system. While in aqueous solution without ethanol, only commonly cubic particles were obtained. It was found that the concentration of ethanol in the solvent was crucial to the production of microspheres. There existed an optimized concentration range of ethanol where microspheres were fabricated with highly yield. Thus-prepared single-phase zeolite 4A microspheres exhibited a large Brunauer–Emmett–Teller (BET) surface area of 666.9m2/g, pore volume of 0.0147cm3/g and average pore size of 6.9nm. The porous spheres exhibited an adsorption capacity of 8.7wt.% to a clean gas fire suppressant of 2-bromo-3,3,3-trifluoropropene (BTP) at room temperature, much higher than that of conventional cubic zeolite 4A particles (4.2wt.%). Bench scale fire tests revealed that these zeolite 4A microspheres soaked with BTP exhibited much better performance than that of cubic counterparts in suppressing methane/air coflowing diffusion flames in cup burner, with the fire extinguishing concentration decreased by more than 20% at the comparable powder discharging rate. Such an improvement could be ascribed to the larger surface area and higher adsorption capacity of zeolite 4A microspheres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.