Abstract

The landscape of thin films is continuously evolving as an attractive self-administration mean to drive patient compliance. This work reports incorporation of drugs into various polymeric compositions using spin coating technology to screen amorphous solid dispersion film formation for buccal applications. Polarized light microscopy and differential scanning calorimetry were used for characterization. Physical stability was assessed after films storage at 0% RH/25°C for 6 months. Chlorpheniramine maleate, theophylline, and famotidine were used as model drugs and mixed with Opadry amb II® or Kollicoat IR®. Acryl-EZE II® or Zein was also used as surface (design I) or surface and base polymers (design II). Of all the drug-Opadry combinations, only chlorpheniramine was amorphously dispersed up to 25% (w/w). In contrast, Kollicoat IR® resulted in amorphous dispersions of all the tested drugs, suggesting that it has a better solubilization capacity. Drugs prepared in design II achieved higher in vitro release compared to respective design I, indicating that lower content of Acryl-EZE II® or Zein can decrease drug release over 3 h. It has been also revealed that Zein could improve physical stability of the aged theophylline solid-dispersed films. Release kinetics of model drugs were satisfactory when described by first-order kinetics, facilitated through anomalous transport of both diffusion and polymer swelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.