Abstract

The goal of the present study is to fabricate the short fiber-reinforced metal matrix composites by accumulative roll bonding. Various mixtures of fibers including 100 glass, 95 glass/5 carbon and 80 glass/20 carbon (all in wt.%) were used as the reinforcement. In order to investigate the bonding quality at layer interface, the composites with various fiber mixtures were produced by cold roll bonding. The bonding strength of the composites under different processing conditions including the fiber mixture, reduction in thickness and post-rolling annealing was measured by the peeling test. The 95 glass/5 carbon mixture was used to fabricate the fiber-reinforced composite through accumulative roll bonding. The fiber distribution, tensile properties and wear behavior of the composite were investigated at various numbers of accumulative roll bonding cycle. It was found that during accumulative roll bonding, the fiber clusters were broken and fragmented into smaller pieces. Results showed that the tensile strength and wear resistance of the composite enhanced with increasing the number of accumulative roll bonding cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.