Abstract

Fabrication of sustainable bio-based malleable thermosets (BMTs) with excellent mechanical properties and reprocessing ability for applications in electronic devices has attracted more and more attention but remains significant challenges. Herein, the BMTs with excellent mechanical robustness and reprocessing ability were fabricated via integrating with radical polymerization and Schiff-base chemistry, and employed as the flexible substrate to prepare the capacitive sensor. To prepare the BMTs, an elastic bio-copolymer derived from plant oil and 5-hydroxymethylfurfural was first synthesized, and then used to fabricate the dynamic crosslinked BMTs through Schiff-base chemistry with the amino-modified cellulose and polyether amine. The synergistic effect of rigid cellulose backbone and the construction of dynamic covalent crosslinking network not only achieved high tensile strength (8.61 MPa) and toughness (3.77 MJ/m3) but also endowed the BMTs with excellent reprocessing ability with high mechanical toughness recovery efficiency of 104.8 %. More importantly, the BMTs were used as substrates to fabricate the capacitive sensor through the CO2-laser irradiation technique. The resultant capacitive sensor displayed excellent and sensitive humidity sensing performance, which allowed it to be successfully applied in human health monitoring. This work paved a promising way for the preparation of mechanical robustness malleable bio-thermosets for electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.