Abstract

Novel, visible light driven CNTs-TiO2@AgI hybrid materials were synthesized by a simple solvothermaldissolution-precipitation method, during which the acid vapor treated carbon nanotubes (CNTs) as template, AgI as sensitizer and TiO2 as the bridge unified them to form a ternary composite. The morphology and chemical components of as-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). XRD and XPS characterizations indicated that anatase TiO2 and crystal AgI co-existed in the composite. HRTEM demonstrated CNTs were decorated with well-dispersed AgI and TiO2 nanoparticles (NPs), and TiO2 had an intimate connection with both AgI and CNTs. Diffusive reflectance UV-vis spectroscopy of CNTs-TiO2@AgI nanocomposite was extended to the whole UV-visible region due to adding of CNTs and AgI NPs. Degradation of Rhodamine B (RhB) polluted water using CNTs-TiO2@AgI NPs was carried out under visible light irradiation, and it showed higher degradation efficiency than CNTs-TiO2, TiO2@AgI, and CNTs@AgI NPs. The primary reason for the enhanced photocatalytic property was attributed to the synergic effect in CNTs-TiO2@AgI, which included the good adsorption ability and electrical conductivity of CNTs as well as the intimate connection and hetero-junctions among AgI, TiO2, and CNTs. Meanwhile, the as-prepared hybrid materials can be easily separated and reclaimed from the liquid phase, and the recycling tests indicated CNTs-TiO2@AgI had renewable performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.