Abstract

The main objective of the current work was to fabricate calcium phosphate (CaP) coating on 99.9% purity magnesium, Mg substrate through simple chemical conversion method and evaluated the surface properties and corrosion performance of the coated substrates. The chemical conversion method was done by immersing the samples inside primary phosphating bath and followed by secondary treatment in alkaline solutions. The coated samples from the primary (PRI) and secondary (SEC) coating treatment were analyzed from morphological, topographical, and phase analysis aspects. The corrosion behaviour of the coatings inside simulated body fluid was assessed by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The PRI and SEC coated were composed of dicalcium phosphate dehydrate (DCPD) and hydroxyapatite (HA), respectively. Both of the coatings improved the corrosion resistance of the Mg substrate. The corrosion potentials, Ecorr of the coated samples becomes nobler compared to the bare substrates. EIS shows that the polarization resistance, Rp is improved about 40 and 2 times fold for PRI and SEC compared to the uncoated samples. Furthermore, PRI shows better corrosion resistance compared to SEC due to lower porosity along with thicker and better coating coverage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.