Abstract

A nanorod-like lanthanum metal–organic framework (LaMOF) was synthesized in aqueous solution by coordinating La(III) to the ligand 1,3,5-benzenetricarboxylic acid. The fibrous LaMOF was fabricated by splitting the nanorod-like LaMOF in a solution of d-amino acid oxidase, and the enzyme was immobilized simultaneously. Based on SEM and TEM images, STEM mapping, and spectra of XPS and FTIR, the mechanism of formation of the fibrous LaMOF and the distinct interfacial phenomena have been elucidated. The fabrication of the fibrous LaMOF and simultaneous immobilization of the enzyme were carried out in aqueous solutions at room temperature, without using any organic solvent. It is a clean and time- and energy-effective process. This work presents a distinct and clean methodology for the fabrication of the fibrous MOF. Potentially, the environmentally benign methodology can be extended to immobilize other enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.