Abstract
Fabrication of dense ceramic electrolyte membranes on porous supports is a key step towards performing gas separations (H 2 or O 2) through the electrochemical pathway. This research develops an approach by making use of the electroless plating method for the preparation of metal-ceramic composite membrane, which is used as the precursor to a metal-oxide composite membrane. As a model of the composite membrane, metallic cobalt is incorporated into a powder-packed layer of La 0.2Sr 0.8CoO 3−δ (LSCO-80), which is pre-coated on a porous MgO disk. When this composite membrane is subjected to sintering at 1000 °C in air, an interpenetrating laminar structure consisting of CoO and LSCO-80 phases is formed according to the cross-section EDX profiles. The oxidation of Co during sintering causes a structure expansion, which exerts a compressive stress on LSCO-80 phase, thus effectively buffering a tensile stress applied by the support. As a result, the composite membrane LSCO-80/CoO can achieve almost gas-tight at ambient temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.